Extensions 1→N→G→Q→1 with N=C2×C18 and Q=C22

Direct product G=N×Q with N=C2×C18 and Q=C22
dρLabelID
C23×C18144C2^3xC18144,113

Semidirect products G=N:Q with N=C2×C18 and Q=C22
extensionφ:Q→Aut NdρLabelID
(C2×C18)⋊C22 = D4×D9φ: C22/C1C22 ⊆ Aut C2×C18364+(C2xC18):C2^2144,41
(C2×C18)⋊2C22 = D4×C18φ: C22/C2C2 ⊆ Aut C2×C1872(C2xC18):2C2^2144,48
(C2×C18)⋊3C22 = C2×C9⋊D4φ: C22/C2C2 ⊆ Aut C2×C1872(C2xC18):3C2^2144,46
(C2×C18)⋊4C22 = C23×D9φ: C22/C2C2 ⊆ Aut C2×C1872(C2xC18):4C2^2144,112

Non-split extensions G=N.Q with N=C2×C18 and Q=C22
extensionφ:Q→Aut NdρLabelID
(C2×C18).C22 = D42D9φ: C22/C1C22 ⊆ Aut C2×C18724-(C2xC18).C2^2144,42
(C2×C18).2C22 = C9×C4○D4φ: C22/C2C2 ⊆ Aut C2×C18722(C2xC18).2C2^2144,50
(C2×C18).3C22 = C4×Dic9φ: C22/C2C2 ⊆ Aut C2×C18144(C2xC18).3C2^2144,11
(C2×C18).4C22 = Dic9⋊C4φ: C22/C2C2 ⊆ Aut C2×C18144(C2xC18).4C2^2144,12
(C2×C18).5C22 = C4⋊Dic9φ: C22/C2C2 ⊆ Aut C2×C18144(C2xC18).5C2^2144,13
(C2×C18).6C22 = D18⋊C4φ: C22/C2C2 ⊆ Aut C2×C1872(C2xC18).6C2^2144,14
(C2×C18).7C22 = C18.D4φ: C22/C2C2 ⊆ Aut C2×C1872(C2xC18).7C2^2144,19
(C2×C18).8C22 = C2×Dic18φ: C22/C2C2 ⊆ Aut C2×C18144(C2xC18).8C2^2144,37
(C2×C18).9C22 = C2×C4×D9φ: C22/C2C2 ⊆ Aut C2×C1872(C2xC18).9C2^2144,38
(C2×C18).10C22 = C2×D36φ: C22/C2C2 ⊆ Aut C2×C1872(C2xC18).10C2^2144,39
(C2×C18).11C22 = D365C2φ: C22/C2C2 ⊆ Aut C2×C18722(C2xC18).11C2^2144,40
(C2×C18).12C22 = C22×Dic9φ: C22/C2C2 ⊆ Aut C2×C18144(C2xC18).12C2^2144,45
(C2×C18).13C22 = C9×C22⋊C4central extension (φ=1)72(C2xC18).13C2^2144,21
(C2×C18).14C22 = C9×C4⋊C4central extension (φ=1)144(C2xC18).14C2^2144,22
(C2×C18).15C22 = Q8×C18central extension (φ=1)144(C2xC18).15C2^2144,49

׿
×
𝔽